

CIBIO - Centre for Integrative Biology

Manifesto degli Studi del Corso di Laurea Magistrale interdipartimentale in Biologia Quantitativa e Computazionale a.a. 2017-2018

Approvato dal Consiglio del Centro di Biologia Integrata dd. 20/03/2017 Approvato dal Dipartimento di Ingegneria e Scienza dell'Informazione dd. 15/03/2017 Approvato dal Dipartimento di Matematica dd. 20/04/2017 Approvato dal Dipartimento di Fisica dd. 19/04/2017

1. Attivazione

Nell'anno accademico 2016-2017 è attivato presso il Centro per la Biologia Integrata (CIBIO) il Corso di Laurea Magistrale in Biologia Quantitativa e Computazionale appartenente alla classe LM-8 – Biotecnologie Industriali. Il corso di studio è attivato con tre strutture didattiche associate: il Dipartimento di Ingegneria e Scienza dell'Informazione, il Dipartimento di Matematica e il Dipartimento di Fisica.

2. Requisiti per l'accesso al corso e norme di ammissione

Per essere ammessi al Corso di Laurea Magistrale in Biologia Quantitativa e Computazionale occorre essere in possesso di un titolo di Laurea di primo livello nelle seguenti discipline e relative classi di laurea: Biotecnologie (L-2), Ingegneria dell'Informazione (L-8), Scienze biologiche (L-13), Scienze e tecnologie agro-alimentari (L-26), Scienze e tecnologie chimiche (L-27), Scienze e tecnologie farmaceutiche (L-29), Scienze e tecnologie fisiche (L-30), Scienze e tecnologie informatiche (L-31), Scienze matematiche (L-35), ovvero di altro titolo di studio conseguito all'estero e riconosciuto idoneo. Per informazioni più dettagliate consultare il regolamento didattico sul sito web del corso di laurea magistrale (www.unitn.it/clm/qcb).

Vista la caratteristica innovativa dei contenuti e dei metodi del corso, considerata la disponibilità limitata di attrezzature e laboratori scientifici per lo svolgimento del tirocinio e quindi il numero limitato di tirocini attivabili, i Consigli del Centro di Biologia Integrata, del Dipartimento di Ingegneria e Scienza dell'Informazione, del Dipartimento di Matematica e del Dipartimento di Fisica dell'Università di Trento hanno accertato che la disponibilità ad accogliere studenti per questo Corso di Laurea nell'anno accademico 2017/2018 non può essere superiore a 40.

3. Attività formative previste per l'a.a 2017/18 per gli studenti iscritti dall' a.a. 2017/18 - Regolamento approvato con DR. n. 418 dd. 14/06/2016

L'offerta didattica è organizzata in due percorsi detti "Biotechnological Track" e "Computational Track" che offrono l'opportunità agli studenti di integrare il proprio background a secondo della preparazione in ingresso. I due percorsi differenziano l'offerta didattica con una maggior attenzione rispettivamente ai contenuti biotecnologici e a quelli computazionali.

Le lezioni del I anno inizieranno martedì 26 settembre 2017 mentre quelle del II anno lunedì 18 settembre 2017.

		INSEGNAMENTI O	BBLIGATO	RI - PERCOR	SO "BI	OTECNOL	OGICAL TE	RACK"	
Anno di corso	Codice	Denominazione dell'insegnamento	T.A.F.	Ore riservate all'attività didattica assistita	CFU	SSD	Periodo	Partizionamento /Sdoppiamento	Docente
1	145539	Biostatistics		96	12				
		Mod. Biostatistics and Probability	Affine	32 ore front. 16 ore lab.	6	MAT/06	Primo semestre		A. Pugliese
		Mod. Biostatistical Computing	Affine	32 ore front. 16 ore lab.	6	INF/01	Primo semestre		O. Kahramanogullari
1	145540	Scientific Programming		96	12				
		Mod. Algorithms and Data Structure	Affine	48 ore front.	6	INF/01	Primo semestre		A. Montresor
		Mod. Scientific Programming	Affine	48 ore lab.	6	INF/01	Primo semestre		A. Montresor

1	145542	Genomics		96	12			
		Mod. Computational Human Genomics	Caratt.	20 ore front. 28 ore lab.	6	BIO/11	Secondo semestre	 F. Demichelis
		Mod. Computational Microbial Genomics	Caratt.	24 ore front. 24 ore lab.	6	BIO/19	Secondo semestre	 N. Segata
1	145541	Biotechnology Engineering		96	12			
		Mod. Genetic and Metabolic Engineering	Caratt.	36 ore front. 12 ore lab.	6	ING- IND/34	Secondo semestre	 M. Hanczyc
		Mod. Tissue Engineering	Caratt.	40 ore front. 8 ore lab.	6	ING- IND/34	Secondo semestre	 A. Motta
1	145554	Inglese B2	Ulteriori attività formative	33	3	L-LIN/12	Primo semestre	 CLA

In aggiunta ai corsi obbligatori, gli studenti del percorso "Biotechnological Track" acquisiscono almeno altri 36 crediti (3 corsi) a scelta vincolata elencati nella tabella seguente.

		INSEGNAMENTI A SCEL	TA VINCO	DLATA – PERC	ORSO	"ВІОТЕС Н	NOLOGIC	AL TRACK"	
Anno di corso	Codice	Denominazione dell'insegnamento	T.A.F.	Ore riservate all'attività didattica assistita	CFU	SSD	Periodo	Partizionamento /Sdoppiamento	Docente
1	145543	Modern Physics		96	12				
		Mod. Physics at the Atomic and Molecular Scale	Caratt.	48 ore front.	6	FIS/01	Primo semestre		P. Faccioli
		Mod. Introduction to Quantum Mechanics	Caratt.	48 ore front.	6	FIS/02	Primo semestre		P. Faccioli
1	145544	Bioinformatics		96	12				
		Mod. Algorithms for Bioinformatics	Caratt.	32 ore front. 16 ore lab.	6	ING- INF/05	Secondo semestre		E. Blanzieri
		Mod. Bioinformatic Resources	Caratt.	24 ore front. 24 ore lab.	6	INF/01	Secondo semestre		da definire
1	145545	Biological Networks		96	12				
		Mod. Biological Network Analysis	Caratt.	32 ore front. 16 ore lab.	6	INF/01	Secondo semestre		M. Lauria
		Mod. Network Modeling and Simulation	Caratt.	48 ore front.	6	INF/01	Secondo semestre		O. Kahramanogullari
2	145546	Computational Biophysics		96	12				
		Mod. Physical Modeling in Biomolecules	Caratt.	48 ore front.	6	FIS/02	Primo semestre		Lattanzi
		Mod. Computer Simulations of Biomolecules	Caratt.	8 ore front. 40 ore lab.	6	FIS/03	Primo semestre		Lattanzi

2	145547	Data Mining		96	12			
		Mod. Machine Learning In condivisione con LM Informatica 0517H, cod 145062	Caratt.	32 ore front. 16 ore lab.	6	INF/01	Primo semestre	 A. Passerini
		Mod. Biological Data Mining	Caratt.	32 ore front. 16 ore lab.	6	ING- INF/05	Primo semestre	 E. Blanzieri
2	145548	Mathematical Modeling		96	12			
		Mod. Mathematical Modeling in Biology	Caratt.	32 ore front. 16 ore lab.	6	MAT/05	Primo semestre	 A. Pugliese
		Mod. Spatio-temporal Models in Cell and Tissue Biology	Caratt.	32 ore front. 16 ore lab.	6	MAT/05	Primo semestre	 A. Pugliese
2	145549	Biotechnology Management and Regulations		96	12			
		Mod. Economics and Management	Caratt.	48 ore front.	6	SECS- P/07	Primo semestre	 da definire
		Mod. Biotechnology Regulations	Caratt.	48 ore front.	6	IUS/04	Primo semestre	 da definire

		INSEGNAMENTI (DBBLIGAT	ORI - PERCO	RSO "C	ОМРИТАТ	IONAL TR	ACK"	
Anno di cors o	Codice	Denominazione dell'insegnamento	T.A.F.	Ore riservate all'attività didattica assistita	CFU	SSD	Periodo	Partizionamento /Sdoppiamento	Docente
1	145550	Molecular Biology of the Cell		96	12				
		Mod. Molecular Basis of Cell Structure and Function	Caratt.	48 ore front.	6	BIO/10	Primo semestre		L. Tiberi
		Mod. Cellular and Molecular Dynamics	Caratt.	48 ore front.	6	BIO/09	Primo semestre		G. Piccoli
1	145551	Chemistry and Biochemistry		96	12				
		Mod. General and Organic Chemistry	Caratt.	48 ore front.	6	CHIM/03	Primo semestre		G. Lolli
		Mod. Analytical Chemistry and Biochemistry	Caratt.	48 ore front.	6	CHIM/06	Primo semestre		E. Biasini
1	145545	Biological Networks		96	12				
		Mod. Biological Network Analysis	Affine	32 ore front. 16 ore lab.	6	INF/01	Secondo semestre		M. Lauria
		Mod. Network Modeling and Simulation	Affine	48 ore front.	6	INF/01	Secondo semestre		O. Kahramanogullari
2	145548	Mathematical Modeling		96	12				
		Mod. Mathematical Modeling in Biology	Affine	32 ore front. 16 ore lab.	6	MAT/05	Primo semestre		A. Pugliese
		Mod. Spatio-temporal Models in Cell and Tissue Biology	Affine	32 ore front. 16 ore lab.	6	MAT/05	Primo semestre		A. Pugliese

1	145554 Inglese B	Ulteriori attività formative	33	3	L-LIN/12	Primo semestre		CLA	
---	------------------	------------------------------------	----	---	----------	-------------------	--	-----	--

In aggiunta ai corsi obbligatori, gli studenti del percorso "Computational Track" acquisiscono almeno altri 36 crediti (3 corsi) a scelta vincolata elencati nella tabella seguente.

		INSEGNAMENTI A SC	ELTA VINC	COLATA – PEI	RCORS	О "СОМРИ	TATIONAI	TRACK"	
Anno di cors o	Codice	Denominazione dell'insegnamento	T.A.F.	Ore riservate all'attività didattica assistita	CFU	SSD	Periodo	Partizionamento /Sdoppiamento	Docente
1	145543	Modern Physics		96	12				
		Mod. Physics at the Atomic and Molecular Scale	Caratt.	48 ore front.	6	FIS/01	Primo semestre		P. Faccioli
		Mod. Introduction to Quantum Mechanics	Caratt.	48 ore front.	6	FIS/02	Primo semestre		P. Faccioli
1	145544	Bioinformatics		96	12				
		Mod. Algorithms for Bioinformatics	Caratt.	32 ore front. 16 ore lab.	6	ING- INF/05	Secondo semestre		E. Blanzieri
		Mod. Bioinformatic Resources	Caratt.	24 ore front. 24 ore lab.	6	INF/01	Secondo semestre		da definire
2	145546	Computational Biophysics		96	12				
		Mod. Physical Modeling of Biomolecules	Caratt.	48 ore front.	6	FIS/02	Primo semestre		Lattanzi
		Mod. Computer Simulations of Biomolecules	Caratt.	8 ore front. 40 ore lab.	6	FIS/03	Primo semestre		Lattanzi

2	145547	Data Mining		96	12			
		Mod. Machine Learning In condivisione con LM Informatica 0517H, cod 145062	Caratt.	32 ore front. 16 ore lab.	6	INF/01	Primo semestre	 A. Passerini
		Mod. Biological Data Mining	Caratt.	32 ore front. 16 ore lab.	6	ING- INF/05	Primo semestre	 E. Blanzieri
2	145549	Biotechnology Management and Regulations		96	12			
		Mod. Economics and Management	Caratt.	48 ore front.	6	SECS- P/07	Primo semestre	 da definire
		Mod. Biotechnology Regulations	Caratt.	48 ore front.	6	IUS/04	Primo semestre	 da definire

CORSI A LIBERA SCELTA DELLO STUDENTE 12 CREDITI

La lista degli esami si completa con almeno 12 crediti a scelta libera fra tutti i corsi attivi presso il Centro di Biologia Integrata, il Dipartimento di Ingegneria e Scienza dell'Informazione, il Dipartimento di Fisica e il Dipartimento di Matematica. Possono anche essere scelti corsi dei percorsi "Biotechnological Track" o "Computational Track" non inseriti nel proprio piano di studi o corsi attivi presso altri Dipartimenti o Centri, mediante approvazione del piano degli studi. Gli insegnamenti a scelta offerti agli studenti sono:

		ATTIVITÀ F	ORMATIVE A L	IBERA SC	ELTA		
Anno di corso	Codice	Denominazione dell'insegnamento	Ore riservate all'attività didattica assistita	CFU	SSD	Periodo	Docente
1-2	145492	High Throughput Technologies	52 32 ore front. 20 ore lab	6	BIO/13	Secondo semestre	M. Denti
1-2	145343	Genome-based approaches in Drug Discovery	48 48 ore front.	6	BIO/10	Secondo semestre	E. Domenici
1-2	145919	Knowledge and data integration	48 48 ore front	6	ING- INF/05	Primo semestre	F. Giunchiglia
1-2	145190	Digital signal processing (in condivisione con LM Matematica 0519H – cod. 145190)	48 48 ore front	6	ING- INF/03	Primo semestre	B. Demir
1-2	145649	Computational Physics	48 48 ore front	6	FIS/04	Primo semestre	F. Pederiva

1-2	145285	Statistical Field Theory	48 (48 ore front.)	6	FIS/02	Secondo semestre	P. Faccioli
1-2	145256	Statistics of Stochastic Processes	48 (48 ore front.)	6	MAT/06	Primo semestre	C. Agostinelli
1-2	145561	Bayesian Statistics	42 (42 ore front.)	6	SECS- S/01	Secondo semestre	C. Agostinelli, P. Novi Inverardi

Gli insegnamenti sopra elencati e quelli suggeriti dallo strumento di compilazione dei piani di studio di ESSE3 sono approvati automaticamente. In tutti gli altri casi, è necessaria la compilazione di un piano di studio cartaceo che sarà valutato dalla struttura didattica responsabile.

Il Consiglio del Centro per la Biologia Integrata si riserva la facoltà di non attivare i corsi a scelta elencati nella precedente tabella per i quali non si riscontri almeno 5 opzioni. Agli studenti sarà richiesto in tempo utile di presentare il piano di studi.

TIROCINIO 6 CREDITI

Il tirocinio rappresenta un'esperienza formativa professionalizzante, coerente con il percorso di studio seguito dagli studenti iscritti al corso di laurea magistrale in Biologia Quantitativa e Computazionale. Il tirocinio ha il duplice scopo di consentire allo studente un riscontro ed un arricchimento delle nozioni apprese nel corso degli studi universitari e di orientare le future scelte professionali; consiste in un'attività di formazione o di collaborazione alla ricerca svolta presso i Dipartimenti dell'Università di Trento (tirocinio interno) o presso un'azienda, altre Università o altri enti convenzionati esterni all'Università, Italiani o esteri (tirocinio esterno).

Al tirocinio vengono attribuiti 6 crediti. Il tirocinio è obbligatorio e di norma legato allo svolgimento della prova finale. Le modalità di accesso, svolgimento e valutazione del tirocinio sono disciplinate nel Regolamento delle attività di tirocinio, approvato dai Consigli delle strutture accademiche coinvolte.

PROVA FINALE 15 CREDITI

Per essere ammessi alla prova finale occorre avere conseguito tutti i crediti previsti nelle altre attività formative del piano degli studi. Alla prova finale sono riservati 15 crediti. La prova finale consiste nella realizzazione di un progetto sperimentale, nella stesura di una tesi ed un esame finale. Il lavoro di tesi ha come obiettivo di portare lo studente a diretto contatto con un argomento di frontiera della ricerca in Biologia Quantitativa e Computazionale e fornisce l'opportunità allo studente di contribuire personalmente all'avanzamento della ricerca. In generale la prova finale ha lo scopo di verificare la maturità scientifica raggiunta al termine del corso di laurea.

Le procedure per l'ammissione all'esame finale, i criteri per la formazione del voto di laurea, le modalità di presentazione dell'elaborato finale, la composizione della commissione di valutazione sono disciplinati nel Regolamento per lo svolgimento della prova finale, approvato dai Consigli delle strutture accademiche coinvolte (http://www.unitn.it/clm/qcb).

I programmi dettagliati dei corsi e le modalità di valutazione sono resi pubblici all'inizio dell'anno accademico. Per tutto quello non espressamente scritto nel manifesto fa fede il regolamento didattico del Corso di Laurea Magistrale in Biologia Quantitativa e Computazionale.