Manifesto degli Studi del Corso di Laurea Magistrale in Matematica

 a.a. 2019-2020

 a.a. 2019-2020}

Approvato dal Consiglio di Dipartimento il 18 aprile 2019

1. Activation

The Department of Mathematics promotes the Master of Science in Mathematics (Corso di Laurea Magistrale in Matematica), belonging to the class "LM-40 - Matematica". The Master of Science in Mathematics is aimed at providing an in-depth knowledge and understanding of several areas of advanced Mathematics, and of its relations to other Sciences. Courses of the Master of Science in Mathematics are taught in English.

2. Curricula

The Master of Science in Mathematics is organized into four curricula:

- Advanced Mathematics
- Cryptography
- Mathematics and Statistics for Life and Social Sciences
- Teaching and Scientific Communication

Every student is required to formally choose one of the curricula and to follow the corresponding rules as stated in the Regolamento Didattico della Laurea Magistrale in Matematica. Advisors of studies are available for the various curricula. Any change of curriculum is subjected to a verification of the Teaching Committee.

3. Admission requirements

To apply to the Master of Science in Mathematics, a student shall fulfill both some formal requirements and a satisfactory personal qualification.
The following information is required and shall be provided according to the instructions given in the web site http://offertaformativa.unitn.it/it/lm/matematica/iscriversi:

- To which curricula the applicant is interested in;
- a detailed study plan of the Bachelor's degree, including titles and syllabi of all the courses taken;
- a document from the University that issued the Bachelor's degree with reporting, in Italian or English, the list of courses, the mark obtained in each of them and the final mark associated with the degree;
- work and professional experiences;
- level of knowledge of English Language, certified by internationally recognized organizations or by the University that issued the Bachelor's degree;
- a motivation statement, explaining why the student is willing to apply to the Master of Science in Mathematics, and what he expects from it.

As far as the formal requirements are concerned, a Bachelor's degree lasting for three years or longer is mandatory; such a degree must provide a good basic mathematical knowledge, including at least linear algebra, mathematical analysis and some of their applications. A certificate for a B1 level of English is also required.
These formal requirements are satisfied by students who possess a bachelor degree belonging to the class "L-35 Scienze matematiche" or a Bachelor's Degree with at least 60 credits in sectors MAT/XX (credits in sectors FIS/, SECS-S/, INF/01 may also be considered).
Knowledge and skills of the applicant are evaluated by the Admission Committee of the Department of Mathematics. The evaluation may require a written examination and or an interview.
The details on the admission procedure can be found as an attachment to this document or on the web site https://offertaformativa.unitn.it/it/lm/matematica/iscriversi.
The student is admitted to one or more chosen curricula or to a different one as decided by the Admission Committee. Some students might be required to follow a particular study plan.

4. Study plan

Students have to submit a study plan, which satisfies the requisites of the chosen curriculum as described in the Regolamento Didattico. A proper study plan must contain at least 120 credits, chosen in the following categories: core courses (caratterizzanti), complementary courses (affini), free choice courses (liberi), language courses and Stage/Thesis.
In this document we propose, for each curriculum specific study plans (called tracks) which are suggested to the students; such study plans are approved by default. Students have the opportunity to write a personal study plan within each curriculum: such study plan must comply with the rules contained in the Regolamento Didattico and is subject to approval by the Teaching Committee. Students are not allowed to repeat activities already taken in their earlier career.

IMPORTANT NOTICE

The courses marked with (*) will be offered in the academic year 2019/20 but not in the academic year 2020/21. The Core courses and the courses marked with $\left({ }^{* *}\right)$ not activated (N.A.) in the academic year 2019/20 will be activated in the academic year 2020/21.

The curriculum Advanced Mathematics

Prerequisites

Students are supposed to have a basic knowledge on the following topics and a good comprehension of some of them:

- Algebra (groups and rings, ideals, quotients, isomorphism theorems);
- Geometry (general and algebraic topology, topological and differentiable manifolds, projective geometry);
- Complex Analysis (in one variable);
- Measure Theory (Lebesgue measure and integration theory);
- Ordinary Differential Equations and basic examples of Equations (Laplace, heat and wave equations); Functional Analysis (Banach and Hilbert spaces, linear operators);
- Basics of approximation techniques in Numerical Analysis;
- Classical foundations of Mathematical Physics; Probability (axiomatic construction).

The graduates will meet strong demand from the business-oriented environment where problem solving and analytical skills are highly appreciated.

Students are invited to choose between the following options, which are called tracks:

- General Advanced Mathematics
- Advanced Algebra and Geometry
- Calculus of Variations, Partial Differential Equations and Dynamical Systems

Advanced Algebra and Geometry

This track has a strong focus on Algebra, Geometry and their interactions, such as in algebraic geometry. In particular, a firm grasp of core algebraic and geometric notions will be required, such as groups, rings, multivariate polynomials, linear algebra, projective geometry, topological spaces, functions of one complex variable. Students will have the possibility to develop a research thesis on Commutative Algebra, Computational Algebra, Lie Theory, Group Theory, Algebraic Curves, Algebraic Surfaces, Higher Dimensional Algebraic Varieties, Real, Complex and Quaternionic Geometry.
The graduates will meet strong demand from the business-oriented environment where problem solving and analytical skills are highly appreciated. The high specialization of this track is well suited for pursuing PHD studies in Italy or abroad, as well as for applying to international fellowships in Pure and Applied Mathematics.

Calculus of Variations, Partial Differential Equations and Dynamical Systems

This track has a strong focus on subjects as: Calculus of Variations, Partial Differential Equations (mainly theoretical but also numerical), Ordinary Differential Equations and Dynamical Systems.
Beyond the general prerequisites of the Curriculum in Advanced Mathematics, eligible students should have a firm grasp of core topics in Analysis such as: standard notions of ordinary differential equations (linear systems and nonlinear Cauchy problem), basic notions of Partial Differential Equations (Laplace, heat and wave equations, classification), elements of Real Analysis (Lebesgue measure theory, Lebesgue integration theory, Lp spaces), first elements of Banach and Hilbert spaces, basic probability theory, basic differential geometry.

The students of this track will have the possibility to develop a research thesis on Calculus of Variations, Analysis in metric spaces, Dynamical Systems, geometrical aspects of Partial Differential Equations, Nonlinear Partial Differential Equations, Optimal Control, Numerical Analysis of Partial Differential Equations. The high specialization of this track is well suited for pursuing PHD studies in Italy or abroad, as well as for applying to international fellowships in Pure and Applied Mathematics.

The curriculum Cryptography

Prerequisites

This curriculum has a strong focus on algebra and its applications to coding theory and cryptography. In particular, a firm grasp of core algebraic notions will be required, such as the notion of groups, rings, multivariate polynomial and the arithmetic of finite fields. The ideal candidate is also expected to have some familiarity with geometry, number theory, and probability.
For the stage-oriented track, also some basic programming notions will be useful, such as conditional statements, loops, and functions, as is a willingness to learn and apply more advanced concepts in unfamiliar programming languages.
For the research-oriented track, more advanced algebra will be useful, such as fluency in Galois theory and number theory.
In this highly specialized curriculum, the students will receive an introduction to modern methods in Computational Algebra, with an emphasis on its main real-life applications:
According to their own inclination, the students are free to choose between two options:

- Stage-oriented
- Research-oriented

Stage-oriented

This track is especially aimed at students who wish to work in the security department of a company. Typically, security departments of banks hire our graduates, but also IT companies and security-focused firms find their study preparation of high interest. Indeed, this track complements a solid algebraic background with both applied courses, such as Cryptography or Coding Theory and Applications, and practical Computer Science courses, such as Java programming (Programmazione 2) or Network Security.
An internship is mandatory to graduate. The internship can be either external in a company or internal within the Laboratory of Cryptography on a project proposed by a company.

Research-oriented

This track is aimed especially at students interested in mathematics research in Applied Algebra, with focus on Cryptography and Coding Theory, and willing to pursue a PhD in Mathematics on these subjects.

The curriculum Mathematics and Statistics for Life and Social Sciences

Prerequisites

Students are supposed to have a basic knowledge on the following topics and a deep comprehension of some of them:

- General Topology;
- Measure Theory (Lebesgue measure and integration theory);
- Functional Analysis (Banach and Hilbert spaces, linear operators, ordinary differential equations, Fourier series);
- Numerical Analysis;
- Probability (axiomatic construction);
- Mathematical Statistics.

Some basics knowledge of partial differential equations is suggested.
Students are invited to choose between the following options, which are called tracks:

- Mathematics for Data Science
- Modelling, Statistics and Analysis of Biosystems
- Modelling and Simulation for Biomedical Applications
- Modelling, Statistics and Analysis in Mathematical Finance

It is also possible for a student to present a personal study plan that may cover applications of mathematics to different fields such as finance, economics, engineering or others. Such a study plan is subject to approval by the Teaching Committee.

Mathematics for Data Science

This track is especially aimed at students who wish to work in Data Analysis departments. Banks, IT companies, medium and large size firms are very interested in students with this kind of preparation. This track is also interesting for those students that would like to pursue a PhD in Statistics and/or Data Science.
Students will have the opportunity to learn the latest developments in Mathematics for Data Science, advanced tools of Probability, Mathematical Statistics, technical aspects in Machine Learning, Deep Learning and Big Data. The emphasis is in the analysis of high dimensional and complex data sets, with applications in various areas such as environmental, biology, social and economic sciences.

Modelling, Statistics and Analysis of Biosystems

This track provides a widespread preparation at the interface between Biological sciences, Mathematics and Informatics. Students from this track have continued with Ph.D. studies and beyond.
An introduction to modern mathematical methods in areas of biology, ecology, epidemiology, molecular networks is provided.
Companies, in particular from the pharmaceutical sector, are interested in students with these competences in modelling and Statistics.

Modelling and Simulation for Biomedical Applications

Students from this track have the opportunity to develop strong abilities in numerical computation and to interact with clinical research in hospitals, universities and research centers. Such competences will provide students the possibility to continue their studies with a PhD in Applied Mathematics or in a biomedical program, as well as to work in the biomedical sector.

Modelling, Statistics and Analysis in Mathematical Finance

The track "Modelling, Statistics and Analysis in Mathematical Finance" aims at preparing students with a modern education in probabilistic, statistical and computational methods.
The Program is entirely taught in English and will provide students with a solid knowledge in key topics of Applied Mathematics, Probability, Statistics and Mathematical Finance.
The track is completed with stages and internships at financial and insurances companies, as well as international research institutions.

The curriculum Teaching and Scientific Communication

The goal of this curriculum is to cover the spectrum of knowledge and skills required to undertake mathematical teaching at secondary school's level as well as to communicate mathematics and science to a broad public.

Prerequisites

Students are supposed to have a basic knowledge on the following topics and a good comprehension of some of them:

- Algebra (groups and rings, ideals, quotients, isomorphism theorems),
- Geometry (general and algebraic topology, topological and differentiable manifolds, basic projective geometry),
- Physics (mechanics, thermodynamics, electromagnetism),
- Measure Theory (Lebesgue measure and integration theory),
- Ordinary Differential Equations,
- Classical Foundations of Mathematical Physics,
- Probability (including the axiomatic construction) and Statistics.

Curriculum Advanced Mathematics, Track General Advanced Mathematics						
Advisors of study: Francesco Serra Cassano						
Codice	Insegnamento	CFU	Hours	SSD	Sem	Lecturer
MANDATORY						
Students are required to get a B2 certificate of English.						
CORE COURSES						
At least 24 credits in sectors MAT/01-05, of which at least 15 in the following table						
145129	Advanced Analysis	9	63	MAT/05	1	Francesco Serra Cassano
145130	Advanced Geometry	9	63	MAT/03	1	Roberto Pignatelli
145135	Computational Algebra	6	42	MAT/02	1	Willem de Graaf
The remaining credits in the following table:						
145146	Mathematical Logic	6	42	MAT/01	1	Stefano Baratella
145394	Coding Theory and Applications	6	42	MAT/02	1	Massimiliano Sala
145131	Algebraic Geometry I	6	42	MAT/03	1	Edoardo Ballico
145139	Partial Differential Equations	6	42	MAT/05	1	Alberto Valli
At least 15 credits in sectors MAT/06-09 from the following table:						
145435	Stochastic Processes	9	63	MAT/06	1	Sonia Mazzucchi - Carlo Orrieri
145152	Numerical Methods for PDE	6	48	MAT/08	2	Ana Maria Alonso Rodriguez
At most one of the following						
145908	Mathematical Physics - Differential Geometric Methods (**)	9	63	MAT/07	2	N.A.
145907	Mathematical Physics - Quantum relativistic Theories (*)	9	63	MAT/07	2	Valter Moretti
COMPLEMENTARY COURSES - Credits in Core and Complementary courses must be at least 75.						
Complementary courses can be chosen in the following table:						
145156	Set Theory (**)	6	42	MAT/01	2	N.A.
145259	Mathematical control theory	6	42	MAT/05	1	Fabio Bagagiolo
145407	Model Theory (*)	6	42	MAT/01	2	Stefano Baratella
145568	Type Theory (*)	6	42	INF/01	2	Roberto Zunino
145321	Cryptography	6	42	MAT/02	1	Mut from Algebraic Cryptography mod. 1 - cod. 145441
145558	Advanced Commutative Algebra	6	42	MAT/02	2	Edoardo Ballico - Giancarlo Rinaldo
145132	Algebraic Geometry II	6	42	MAT/03	2	Luis Solá Conde
145566	Real Algebraic Geometry (**)	6	42	MAT/03	2	N.A.
145506	Algebraic Topology (*)	6	42	MAT/03	1	Riccardo Ghiloni
145538	Geometric Analysis	9	63	MAT/05	2	Lorenzo Mazzieri
145507	Advanced Topics in Analysis	6	42	MAT/05	1	Gian Paolo Leonardi
145557	Advanced Calculus of Variations	6	42	MAT/05	2	Andrea Pinamonti
145258	Geometric Measure Theory (**)	6	42	MAT/05	2	N.A.
145902	Advanced Statistical Methods	6	42	MAT/06	2	Claudio Agostinelli
145331	Mathematical Aspects of Bioelectromagnetism and Imaging	6	42	MAT/08	1	Ana Maria Alonso Rodriguez
145567	Topics in Mathematical Physics of Quantum Theories	6	42	MAT/07	2	N.A.
FREE CHOICE COURSES						
	The choice of free courses shall be consistent with the selected curriculum. Students may use 3 of these CFU to get a C1 certificate of English.					
THESIS						
	The course of studies is concluded with the discussion of an original thesis providing 30 CFU.					

Curriculum Advanced Mathematics, Track Advanced Algebra and Geometry						
Advisors of study: Claudio Fontanari, Willem De Graaf						
Code	Course	CFU	Hours	SSD	Sem	Lecturer
MANDATORY						
Students are required to get a B2 certificate of English.						
CORE COURSES						
145129	Advanced Analysis	9	63	MAT/05	1	Francesco Serra Cassano
145130	Advanced Geometry	9	63	MAT/03	1	Roberto Pignatelli
145135	Computational Algebra	6	42	MAT/02	1	Willem de Graaf
145435	Stochastic Processes	9	63	MAT/06	1	Sonia Mazzucchi - Carlo Orrieri
One course among the following:						
145908	Mathematical Physics - Differential Geometric Methods (**)	9	63	MAT/07	2	N.A.
145907	Mathematical Physics - Quantum relativistic Theories (*)	9	63	MAT/07	2	Valter Moretti
COMPLEMENTARY COURSES						
At least 33 credits chosen in the following table:						
145156	Set Theory (**)	6	42	MAT/01	2	N.A.
145407	Model Theory (*)	6	42	MAT/01	2	Stefano Baratella
145560	Advanced Group Theory (**)	6	42	MAT/02	2	N.A.
145558	Advanced Commutative Algebra	6	42	MAT/02	2	Edoardo Ballico - Giancarlo Rinaldo
145212	Discrete Fourier Analysis	6	42	MAT/02	2	Giancarlo Rinaldo
145321	Cryptography	6	42	MAT/02	1	Mut from Algebraic Cryptography mod. 1 - cod. 145441
145131	Algebraic Geometry I	6	42	MAT/03	1	Edoardo Ballico
145132	Algebraic Geometry II	6	42	MAT/03	2	Luis Sola Conde
145566	Real Algebraic Geometry (**)	6	42	MAT/03	2	N.A.
145506	Algebraic Topology (*)	6	42	MAT/03	1	Riccardo Ghiloni
145538	Geometric Analysis (*)	9	63	MAT/05	2	Lorenzo Mazzieri
FREE CHOICE COURSES						
	Students, in this track are highly recommended to choose the free courses among the courses in settori MAT/02-03. The courses can also be taken from the Bachelor's degree, among the following: Algebra Commutativa, Geometria Differenziale, Teoria algebrica dei numeri and Teoria di Galois. Students may use 3 of these CFU to get a C1 certificate of English.					
THESIS						
	The course of studies is concluded with the discussion of an original thesis providing 30 CFU.					

Curriculum Advanced Mathematics, Track Calculus of Variations, Partial Differential Equations and Dynamical Systems						
Advisors of study: Raul Serapioni, Francesco Serra Cassano						
Code	Course	CFU	Hours	SSD	Sem	Lecturer
MANDATORY						
Students are required to get a B2 certificate of English.						
CORE COURSES						
145130	Advanced Geometry	9	63	MAT/03	1	Roberto Pignatelli
145129	Advanced Analysis	9	63	MAT/05	1	Francesco Serra Cassano
145139	Partial Differential Equations	6	42	MAT/05	1	Alberto Valli
145435	Stochastic Processes	9	63	MAT/06	1	Sonia Mazzucchi - Carlo Orrieri
145152	Numerical Methods for PDE	6	48	MAT/08	2	Ana Maria Alonso Rodriguez
COMPLEMENTARY COURSES - $\mathbf{3 6}$ credits chosen in the following table:						
145259	Mathematical control theory	6	42	MAT/05	1	Fabio Bagagiolo
145434	Fourier Analysis	6	42	MAT/05	1	Augusto Visintin
145142	Foundations of Analysis	6	42	MAT/05	2	Fabio Bagagiolo
145538	Geometric Analysis (*)	9	63	MAT/05	2	Lorenzo Mazzieri
145507	Advanced Topics in Analysis	6	42	MAT/05	1	Gian Paolo Leonardi
145557	Advanced Calculus of Variations	6	42	MAT/05	2	Andrea Pinamonti
145258	Geometric Measure Theory (**)	6	42	MAT/05	2	N.A.
145159	Stochastic Differential Equations	6	42	MAT/06	2	Carlo Orrieri
145908	Mathematical Physics - Differential Geometry Methods (**)	9	63	MAT/07	2	N.A.
145907	Mathematical Physics - Quantum relativistic Theories (*)	9	63	MAT/07	2	Valter Moretti
FREE CHOICE COURSES						
	Students, in this track are highly recommended to choose the free courses among the courses in sector MAT/05. The courses can also be taken from the Bachelor's degree, among the following: Equazioni Differenziali Ordinarie, Calcolo delle Variazioni, Analisi Funzionale, Geometria Differenziale. Students may use 3 of these CFU to get a C1 certificate of English.					
THESIS						
	The course of studies is concluded with the discussion of an original thesis providing 30 CFU.					

Curriculum Cryptography, Track Stage-Oriented						
Advisor of study: Massimilano Sala						
Codice	Insegnamento	CFU	Hours	SSD	Sem	Lecturer
MANDATORY						
Students are required to get a B2 certificate of English.						
CORE COURSES						
145441	Algebraic Cryptography Cryptography Finite Fields and Symmetric Cryptography	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \end{aligned}$	MAT/02	$\begin{array}{r} 1 \\ 2 \\ \hline \end{array}$	Massimiliano Sala
145394	Coding Theory and Applications	6	42	MAT/02	1	Massimiliano Sala
145135	Computational Algebra	6	42	MAT/02	1	Willem de Graaf
145157	Stochastic Processes (I modulo)	6	42	MAT/06	1	Mut as a part of Stochastic Processes (cod. 145435)
145427	Scientific Computing	9	72	MAT/08	2	Michael Dumbser, Peshkov Ilya, Lucas Omar Müller
COMPLEMENTARY COURSES						
The following three courses:						
145508	Advanced Programming of Cryptographic Methods	6	48	INF/01	1	Giancarlo Rinaldo
145937	Introduction to computer and network security	6	48	ING-INF/05	1	Mut DISI (0517H - cod. 145937)
145777	Applied Cryptography	6	42	MAT/02	1	Massimiliano Sala + Contratto
At least 18 credits in the following table:						
145451	Computability and computational complexity	6	48	MAT/01	1	Mut DISI (0517H - cod. 145451)
145395	Advanced Coding Theory and Cryptography Modulo Advanced Coding Theory Modulo Advanced Cryptography	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & \text { MAT/02 } \\ & \text { MAT/03 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Massimiliano Sala Edoardo Ballico
145212	Discrete Fourier Analysis	6	42	MAT/02	2	Giancarlo Rinaldo
145256	Statistics of Stochastic Processes	6	48	MAT/06	1	Claudio Agostinelli
145396	Formal Techniques for Cryptographic Protocol Analysis	6	42	INF/01	2	Roberto Zunino
145192	Data Hiding	6	48	ING-INF/03	1	Mut DISI (0340H - cod. 145614)
145190	Digital Signal Processing	6	48	ING-INF/03	1	Mut DISI (0340H - cod. 145624)
145056	Formal methods	12	96	ING-INF/05	2	Mut DISI (0517H - cod. 145056)
145065	Network Security	6	48	INF/01	2	Mut DISI (0517H - cod. 145065)
FREE CHOICE COURSES						
	To complement the preparation in this track, students who have not attended courses focused on Java programming in the Bachelor's degree are highly recommended to take the course Programmazione 2. In order to attend the course Network Security is recommended to take first the course Reti Avanzate Students are recommended to use 3 of these CFU to get a C1 certificate of English.					
THESIS						
	The course of studies is concluded either with the discussion of an original thesis, providing 30 CFU or with an internship/placement, which assigns 12 CFU, followed by an original thesis providing 18 CFU.					

Curriculum Cryptography, Track Research-Oriented						
Advisor of study: Massimiliano Sala						
Code	Course	CFU	Hours	SSD	Sem	Lecturer
COMPULSORY						
Students are required to get a B2 certificate of English.						
CORE COURSES						
145441	Algebraic Cryptography Cryptography Finite Fields and Symmetric Cryptography	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \end{aligned}$	MAT/02	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	Massimiliano Sala
145394	Coding Theory and Applications	6	42	MAT/02	1	Massimiliano Sala
145135	Computational Algebra	6	42	MAT/02	1	Willem de Graaf
145256	Statistics of Stochastic Processes	6	48	MAT/06	1	Claudio Agostinelli
145435	Stochastic Processes	9	63	MAT/06	1	Sonia Mazzucchi- Carlo Orrieri
COMPLEMENTARY COURSES - 36 CFU						
145395	Advanced Coding Theory and Cryptography Modulo Advanced Coding Theory Modulo Advanced Cryptography	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \end{aligned}$	MAT/02 MAT/03	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Massimiliano Sala Edoardo Ballico
145212	Discrete Fourier Analysis	6	42	MAT/02	2	Giancarlo Rinaldo
145131	Algebraic Geometry I	6	42	MAT/03	1	Edoardo Ballico
145396	Formal Techniques for Cryptographic Protocol Analysis	6	42	INF/01	2	Roberto Zunino
	The remaining credits can be taken from courses in sectors MAT/XX offered by the Master degree in Mathematics of the Universities of Trento or Verona.					
FREE CHOICE COURSES						
	Students of this track are highly recommended to choose the free courses among the courses in the sectors MAT/0203. The courses can also be taken from the Bachelor's degree; Algebra Commutativa, Teoria algebrica dei numeri and Teoria di Galois are particularly suggested. Students are recommended to use 3 of these CFU to get a C1 certificate of English.					
THESIS						
	The course of studies is concluded either with the discussion of an original thesis, providing 30 CFU or with an internship/placement, which assigns 12 CFU, followed by an original thesis providing 18 CFU.					

| Curriculum Mathematics and Statistics for Life and Social Sciences, | | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :--- | :--- |
| Track Mathematics for Data Science | | | | | | |

Curriculum Mathematics and Statistics for Life and Social Sciences, Track Modelling, Statistics and Analysis in Mathematical Finance						
Advisor of study: Stefano Bonaccorsi						
Codice	Insegnamento	CFU	Hours	SSD	Sem	Lecturer
MANDATORY						
Students are required to get a B2 certificate of English.						
CORE COURSES						
145139	Partial Differential Equations	6	42	MAT/05	1	Alberto Valli
145145	Mathematical Biology	9	63	MAT/05	2	Andrea Pugliese
145256	Statistics of Stochastic Processes	6	48	MAT/06	1	Claudio Agostinelli
145435	Stochastic Processes	9	63	MAT/06	1	Sonia Mazzucchi - Carlo Orrieri
145159	Stochastic Differential Equations	6	42	MAT/06	2	Carlo Orrieri
COMPLEMENTARY COURSES - At least 39 credits in the following lists:						
Numerical Analysis						
145152	Numerical Methods for PDE	6	48	MAT/08	2	Ana Maria Alonso Rodriguez
145427	Scientific Computing	9	72	MAT/08	2	Michael Dumbser, Peshkov llya, Lucas Omar Müller
Programming skills						
145136	Data Analysis and Exploration	6	48	INF/01	2	Mario Lauria
145912	Scientific Programming	6	48	INF/01	1	Mut QCB ${ }^{0} 0521 \mathrm{H}$ Scientific programminig - mod 2 - cod. 145540)
Further Mathematical and Statistical courses						
145914	Statistical Models	6	42	MAT/06	1	Claudio Agostinelli
145902	Advanced Statistical Methods	6	42	MAT/06	2	Claudio Agostinelli
145561	Bayesian Statistics	6	42	MAT/06	2	Claudio Agostinelli, Pierluigi Novi Inverardi
145905	Geometry and Topology for Data Analysis (*)	6	42	MAT/03	1	Claudio Fontanari
145909	Tensor Decomposition for Big Data Analysis	6	42	MAT/02	1	Alessandra Bernardi
145855	Actuarial Mathematics for Life Insurance	6	42	MAT/06	2	Stefano Bonaccorsi
Complements in Finance and Economics						
121137	Mercati e Intermediari Finanziari Progredito	11	66	SECS-P/11	2	Mut DEM 0122H - cod. 121137
121255	Strumenti di Investimento e Derivati	11	76	SECS-P/11	1	Mut DEM 0122H - cod. 121255
121414	Workshop on Financial simulation	6	36	SECS-S/03	2	Mut DEM 0122H - cod. 121414
121395	Financial markets and economic activity	6	54	SECS-P/01	2	Mut DEM 0119H - cod. 121395
FREE CHOICE COURSES						
	Students are suggested to take the free courses among those listed above. For students missing some prerequisites in mathematical analysis or probability theory, it is possible to include here appropriate courses (in Italian) from the Bachelor's degree. Students may use 3 of these CFU to get a C1 certificate of English.					
THESIS						
	The course of studies is concluded either with the discussion of an original thesis, providing 30 CFU or with an internship/placement, which assigns 12 CFU, followed by an original thesis providing 18 CFU.					

Curriculum Mathematics and Statistics for Life and Social Sciences, Track Modelling, Statistics and Analysis of Biosystems

Advisor of study: Andrea Pugliese

Codice	Insegnamento	CFU	Hours	SSD	Sem	Lecturer
MANDATORY						
Students are required to get a B2 certificate of English.						
CORE COURSES						
The following courses						
145139	Partial Differential Equations	6	42	MAT/05	1	Alberto Valli
145145	Mathematical Biology	9	63	MAT/05	2	Andrea Pugliese
145256	Statistics of Stochastic Processes	6	48	MAT/06	1	Claudio Agostinelli
145435	Stochastic Processes	9	63	MAT/06	1	Sonia Mazzucchi - Carlo Orrieri
At least one of the following:						
145152	Numerical Methods for PDE	6	48	MAT/08	2	Ana Maria Alonso Rodriguez
145427	Scientific Computing	9	72	MAT/08	2	Michael Dumbser, Peshkov Ilya, Lucas Omar Müller

COMPLEMENTARY COURSES - Credits in Core and Complementary courses must be at least 75

All the courses in the following table:

| 145914 | Statistical Models | 6 | 42 | MAT/06 | 1 | Claudio Agostinelli |
| :--- | :--- | :---: | :---: | :--- | :--- | :--- | :--- |
| 145136 | Data Analysis and Exploration | 6 | 48 | INF/01 | 2 | Mario Lauria |
| 145389 | Introduction to Cell Biology | 6 | 48 | BIO/13 | 1 | Mut. DISI 0517H - cod. 145389 |
| At least two of the following: | | | | | | |
| 145133 | Advanced Topics in Biomathematics | 6 | 42 | MAT/05 | 2 | N.A. |
| 145434 | Fourier Analysis | 6 | 42 | MAT/05 | 1 | Augusto Visintin |
| 145910 | Network Modeling and Simulation | 6 | 48 | INF/01 | 2 | Mut. QCB (0521H Biological Networks
 and Data Analysis mod. 2 - cod. 145738) |
| 145902 | Advanced Statistical Methods | 6 | 42 | MAT/06 | 2 | Claudio Agostinelli |
| 145561 | Bayesian Statistics | 6 | 42 | MAT/06 | 2 | Claudio Agostinelli,
 Pierluigi Novi Inverardi |
| 145159 | Stochastic Differential Equations | 6 | 42 | MAT/06 | 2 | Carlo Orrieri |
| 145331 | Mathematical Aspects of
 Bioelectromagnetism and Imaging | 6 | 42 | MAT/08 | 1 | Ana Maria Alonso Rodriguez |
| 145903 | Deep Learning | 6 | 48 | INF/01 | 2 | Mut. DISI 0517H - cod. 145764 |
| 145062 | Machine Learning | 6 | 48 | INF/01 | 1 | Mut. DISI 0517H - cod. 145062 |
| 145053 | Laboratory of Biological Data Mining | 6 | 48 | ING-
 INF/05 | 1 | Mut. QCB 0521H - cod. 145053 |

FREE CHOICE COURSES

Students are suggested to take the free courses among those listed above. For students missing some prerequisites in mathematical analysis or probability theory, it is possible to include here appropriate courses (in Italian) from the Bachelor's degree.
Students may use 3 of these CFU to get a C1 certificate of English.

THESIS

The course of studies is concluded either with the discussion of an original thesis, providing 30 CFU or with an internship/placement, which assigns 12 CFU, followed by an original thesis providing 18 CFU.

Curriculum Mathematics and Statistics for Life and Social Sciences, Track Modelling and Simulation for Biomedical Applications						
Advisor of study: Alberto Valli						
Code	Course	CFU	Hours	SSD	Sem	Lecturer
MANDATORY						
Students are required to get a B2 certificate of English.						
CORE COURSES						
145139	Partial Differential Equations	6	42	MAT/05	1	Alberto Valli
145145	Mathematical Biology	9	63	MAT/05	2	Andrea Pugliese
145331	Mathematical Aspects of Bioelectromagnetism and Imaging	6	42	MAT/08	1	Ana Maria Alonso Rodriguez
145152	Numerical Methods for PDE	6	48	MAT/08	2	Ana Maria Alonso Rodriguez
145427	Scientific Computing	9	72	MAT/08	2	Michael Dumbser, Peshkov Ilya, Lucas Omar Müller
COMPLEMENTARY COURSES -						
145428	Computational Haemodynamics	9	72	MAT/08	2	Lucas Omar Muller
27 credits chosen in the following table:						
145434	Fourier Analysis	6	42	MAT/05	1	Augusto Visintin
145914	Statistical Models	6	42	MAT/06	1	Claudio Agostinelli
145429	Biomedical Applications of Mathematics	3	21	MAT/08	2	Lucas Omar Muller
145377	Fisiologia Molecolare	6	57	BIO/09	1	Mut CIBIO 0516G - cod. 145377
145235	Molecular and Cellular Biophysics	6	48	BIO/10	1	Mut.FIS 0518H - cod. 145235
145338	Bio-Medical Imaging	6	48	FIS/07	2	Mut. FIS 0518H - cod. 145338
145332	Theoretical biomechanics	9	70	ICAR/01	1-2	Davide Bigoni Luigi Fraccarollo
145392	Physiological flow and transport in porous tissues	6	42	ICAR/02	2	Alberto Bellin
FREE CHOICE COURSES						
	Students are invited to take the free courses among those listed above. Students may use 3 of these CFU to get a C1 certificate of English.					
THESIS						
	The course of studies is concluded either with the discussion of an original thesis, providing 30 CFU or with an internship/placement, which assigns 12 CFU, followed by an original thesis providing 18 CFU.					

Curriculum Teaching and scientific communication						
Advisor of study: Silvano Delladio						
Code	Course	CFU	Hours	SSD	Sem	Lecturer
MANDATORY						
Students are required to get a B2 certificate of English.						
145151	Mathematical models for the Physical, Natural and Social Sciences (Core course)	6	42	MAT/06	1	Stefano Bonaccorsi
145155	Modern Physics (Complementary course)	12	84	FIS/08	1	Giovanni Prodi
OTHER CORE COURSES - At least 30 credits						
At least 18 credits in the following table						
145253	Foundations of Geometry	6	42	MAT/03	2	Gianluca Occhetta
145904	Elementary Mathematics from a Higher Viewpoint	6	42	MAT/04	2	Claudio Fontanari
145144	Laboratory of Didactics of Mathematics (**)	6	42	MAT/04	2	N.A.
145142	Foundations of Analysis	6	42	MAT/05	2	Fabio Bagagiolo
145154	Experimental Mathematics Laboratory at School Level (*)	6	42	MAT/04	2	Silvano Delladio
The remaining credits shall be taken from the following list:						
145146	Mathematical Logic	6	42	MAT/01	1	Stefano Baratella
145135	Computational Algebra	6	42	MAT/02	1	Willem de Graaf
145130	Advanced Geometry	9	63	MAT/03	1	Roberto Pignatelli
145131	Algebraic Geometry I	6	42	MAT/03	1	Edoardo Ballico
145129	Advanced Analysis	9	63	MAT/05	1	Francesco Serra Cassano
145145	Mathematical Biology	9	63	MAT/05	2	Andrea Pugliese
OTHER COMPLEMENTARY COURSES - Credits in Core and Complementary courses must be at least 75.						
At least 18 credits chosen in the following table:						
145906	Laboratory Techniques for Mathematics Teaching	6	56	MAT/04	1	Elisabetta Ossanna
145914	Statistical Models	6	42	MAT/06	1	Claudio Agostinelli
145153	Experimental Physics Laboratory at High School Level I	6	56	FIS/08	1	Pasquale Onorato
145215	Experimental Physics Laboratory at High School Level II	6	56	FIS/08	2	Pasquale Onorato
145820	Laboratory of Computer Science Education	6	48	INF/01	2	Mut DISI 0517H -cod. 145820
	Students can also choose courses in the following sectors: MAT/*, FIS/*, INF/01 offered by Master's Degrees of the University of Trento or by the Master's Degree in Mathematics of the University of Verona					
FREE CHOICE COURSES						
	Students may use 3 of these CFU to get a C take two of the following courses of the PFP l'insegnamento, Pedagogia Generale per l'in culturale per l'insegnamento. Other PFPTI courses in sectors di insegnanti/47527/ammissione-al-percorso-pfp (crediti sovra numerari).	1 certific TI prog segnam fferent pti-e-ric	ate of Eng ram amon ento, Intro from noscimen	lish. Stude g the free duzione all AT/XX o-cfu) can	nts int choice a Psic and be	rested in entering a teacher car courses: Psicologia dello Svilu ologia per l'insegnamento, Antro FIS/XX (http://web.unitn.it/form aken only as extracurricular a
THESIS						
	The course of studies is concluded either with the discussion of an original thesis, providing 30 CFU or with an internship/placement, which assigns 12 CFU, followed by an original thesis providing 18 CFU.					

Appendix - Glossary

- Credit $=$ Credito formativo universitario = CFU

This is the European unit for measuring the value of activities such a course, an internship, or a thesis. One credit corresponds to about 7 hours of frontal lectures, and a total of 25 hours of work for the student. 120 CFU are required for a Master.

- Sector $=$ Settore scientifico-disciplinare = SSD

This is a nation-wide classification of University courses, sorted out in various categories. The categories (SSD) for Mathematics are the following:

	SSD	Italiano
- MAT/01	Logica Matematica	Mathematical Logic
-	MAT/02	Algebra

For other sectors see http://www.miur.it/UserFiles/115.htm

- Curriculum (pl. curricula)

Within the general framework of the Master of Science in Mathematics, it is possible to aim at gaining an indepth knowledge and understanding of several areas of advanced Mathematics (curriculum Advanced Mathematics) or to aim more at acquiring knowledge useful for teaching and communicating mathematics and other sciences (curriculum Teaching and Scientific Communication) or to specialize in one of the curricula of Mathematics and Statistics for Life and Social Sciences or in Cryptography. Each curriculum will have different rules in the choice of courses.

- Study plan (Piano di studi)

Each student of the Master of Science in Mathematics has to specify the choices he is taking among the various courses in a document with this name.

- Track = suggested study plan

Examples of possible study plans centered on different aspects of mathematical studies.

- Stage: the Italian term (actually borrowed from French) for an internship.
- Admission Committee:
- Semester (shortened in sem.)

Teaching is arranged in two periods, conventionally called semesters = six months, although they last only about 14 weeks each. The first semester starts in mid-September and ends just before Christmas. The second semester lasts from mid-February to the end of May/beginning of June.

- Corso mutuato = Mut

This is a course which is offered by a different Department or is a proxy for a course held in a different Department.

- N.A. = Not Available

A course that has been active in previous years, and may well be active again in the future, but is not currently offered.

