Reserved scholarship B

Progetti finanziati nell’ambito dei Dipartimenti di Eccellenza 2023-2027.

Curriculum Bio-Industry
Il vincitore sceglierà il progetto di ricerca dall’elenco sottostante.

*MUR-funded grants - Departments of Excellence 2023-2027.
Bio-Industry Curriculum*
The winner will choose from the list available below the research project.

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Project title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Emiiano Biasini</td>
<td>Development, Optimization and Characterization of a Novel Technology for Identifying Pharmacological Cancer Suppressors / Sviluppo, Ottimizzazione e Caratterizzazione di una Nuova Tecnologia per l’Identificazione di Soppressori Farmacologici del Cancro</td>
</tr>
<tr>
<td>2 – Graziano Lolli, Maria Caterina Mione & Alessandro Quattrone</td>
<td>Lead optimization of a CK2 kinase inhibitor highly effective in neuroblastoma and melanoma / Traslazione a candidato farmaco di un inibitore della chinasi CK2 efficace in neuroblastoma e melanoma</td>
</tr>
</tbody>
</table>
Project 1

Development, Optimization and Characterization of a Novel Technology for Identifying Pharmacological Cancer Suppressors

Sviluppo, Ottimizzazione e Caratterizzazione di una Nuova Tecnologia per l'Identificazione di Soppressori Farmacologici del Cancro

<table>
<thead>
<tr>
<th>Laboratory:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dulbecco Telethon Laboratory of Prions and Amyloids (https://www.cibio.unitn.it/95/dulbecco-telethon-laboratory-of-prions-and-amyloids)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Principal Investigator:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emiliano Biasini (emiliano.biasini@unitn.it)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Keywords:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer; Immune Response; Single Cell Analysis (Advanced Imaging)</td>
</tr>
</tbody>
</table>

Synthetic description of the activity and expected research outcome

Abstract. We have developed an imaging-based bimolecular fluorescence complementation assay called Light Identification of Protein Suppressors (LIPS) for real-time quantification of protein expression, trafficking, and degradation. Initially designed to monitor early cellular events in prion protein (PrP) biogenesis, this PhD project will extend LIPS’s utility to proteins involved in immune recognition and cancer.

Background and Rationale. Originally created to detect protein-protein interactions, Bimolecular Fluorescence Complementation (BiFC) uses two fluorescent protein fragments that signal interaction through fluorescence when near each other. We hypothesized that this mechanism could monitor expression, trafficking, and degradation of target proteins, facilitated by a superfolder green fluorescent protein (GFP) split into GFP1-10 and GFP11, which spontaneously reassembles, emitting a strong fluorescent signal detectable by live microscopy.

Preliminary Results. We have validated the use of the GFP1-10/GFP11 system in live imaging to monitor PrP, which is implicated in transmissible spongiform encephalopathies, also called prion diseases, and potentially other neurodegenerative disorders. LIPS facilitated rapid screening for PrP-suppressing compounds, with a pilot study identifying promising candidates among cardiac glycosides, now undergoing clinical evaluation.

Description of the Project’s Activities. The PhD candidate will leverage LIPS’s versatility for screening compounds that can modulate the expression of the RNA-binding protein RALY. This protein has recently been shown to influence the expression of multiple genes related to immune and inflammatory responses through the alternative splicing of the factor proto-oncogene c-FOS, highlighting a role for RALY in cancer immune evasion and chemotherapy resistance. The student will benefit from the extensive experience collected by the researchers in the Dulbecco Telethon Laboratory of Prion & Amyloids (https://www.cibio.unitn.it/95/dulbecco-telethon-laboratory-of-prions-and-amyloids), who originally developed the LIPS technology, as well as from an ongoing collaboration with the company Sibylla Biotech (https://www.sibyllabiotech.it), a leader in the field of molecular degraders.

Educational Aspects. In addition to the opportunities provided by the Doctorate in Biomolecular Sciences at the Department CIBIO, University of Trento, our lab will provide a unique environment for the student’s scientific growth in drug discovery. The student will be able to attend internal lab meetings and national and international conferences (at least twice a year) and learn directly from researchers working in academic institutions and pharmaceutical companies. We will help the student develop a cross-disciplinary mindset and acquire pharmaceutical technologies and drug discovery skills. These are areas of strategic interest for building the student's academic or industry career.

Descrizione sintetica dell’attività e dei risultati attesi

Abstract. Abbiamo sviluppato un’analisi di complementazione della fluorescenza bimolecolare, chiamata Light Identification of Protein Suppressors (LIPS), per la quantificazione in tempo reale dell’espressione proteica, del traffico e della degradazione. Inizialmente progettata per monitorare gli eventi cellulari precoci nella biogenesi della proteina prionica (PrP), questo progetto di dottorato estenderà l’utilità di LIPS a proteine coinvolte nel riconoscimento immunitario e nel cancro.

Contesto e Razionale. Originariamente creata per rilevare interazioni proteina-proteina, la Complementazione della Fluorescenza Bimolecolare (BiFC) utilizza due frammenti di proteina fluorescente che segnalano l’interazione tramite fluorescenza quando si trovano vicini. Abbiamo ipotizzato che questo meccanismo potesse monitorare l’espressione, il traffico e la degradazione delle proteine bersaglio, facilitato da una proteina fluorescente (GFP) divisa in due parti (GFP1-10 e GFP11) che si riassociano spontaneamente, emettendo un segnale fluorescente facilmente rilevabile tramite microscopia a fluorescenza.

Risultati Preliminari. Abbiamo validato l’uso del sistema GFP1-10/GFP11 per monitorare PrP, una proteina implica nella encefalopatie spongiforme transmissibili, note anche come malattie da prioni, e potenzialmente in altri disturbi neurodegenerativi. LIPS ha facilitato la rapida selezione di composti soppressori di PrP, con uno studio pilota che ha identificato candidati promettenti tra i glicosidi cardiacci, ora in valutazione clinica.

sviluppato la tecnologia LIPS, così come della collaborazione in corso con l'azienda Sibylla Biotech (https://www.sibyllabiotech.it), leader nel campo dei degradatori molecolari.

Aspetti Formativi. Oltre alle opportunità offerte dal Dottorato in Scienze Biomolecolari presso il Dipartimento CIBIO, Università di Trento, il nostro laboratorio fornirà un ambiente unico per la crescita scientifica dello studente nel campo della scoperta di farmaci. Lo studente potrà partecipare a riunioni interne del laboratorio e a conferenze nazionali e internazionali (almeno due volte all'anno) e imparare direttamente da ricercatori che lavorano in istituzioni accademiche e aziende farmaceutiche. Aiuteremo lo studente a sviluppare un approccio interdisciplinare e ad acquisire tecnologie e competenze nella scoperta e nello sviluppo di farmaci, settori di interesse strategico per costruire la carriera accademica o industriale dello studente.

Project 2

Lead optimization of a CK2 kinase inhibitor highly effective in neuroblastoma and melanoma

Traslazione a candidato farmaco di un inibitore della chinasi CK2 efficace in neuroblastoma e melanoma

Laboratory: Laboratory of Protein Crystallography and Structure-Based Drug Design (https://www.cibio.unitn.it/504/laboratory-of-protein-crystallography-and-structure-based-drug-design)

Principal Investigator: Graziano Lolli (graziano.lolli@unitn.it), Maria Caterina Mione (mariacaterina.mione@unitn.it) & Alessandro Quattrone (alessandro.quattrone@unitn.it)

Keywords: Cancer; Single Cell Analysis

Synthetic description of the activity and expected research outcome

Background

CK2 is a protein kinase overactive in various cancers. We developed a CK2 inhibitor (CK2-TN03), superior to the one in clinical trials, inducing dramatic cell death in neuroblastoma (NB). Its mechanism of action (MoA) has been defined: CK2-TN03 reduces the level and activity of the anti-apoptotic and mitosis-promoting survivin protein amplified in all high-risk NB. In NB xenografts, CK2-TN03 reduces tumor growth and enhances survival, without toxicity. The compound has been characterized for its binding mode and specificity (over 345 human kinases), and tested on 160 cancer cell lines. Its efficacy is also remarkable in melanoma, osteosarcoma and soft tissue sarcomas. CK2-TN03 chemical class has been patented with the University of Trento being the unique IP owner.

Hypothesis

CK2-TN03 is a lead compound that can rapidly progress to a drug candidate following in vitro ADMET and in vivo pharmacokinetics (PK) optimization. Its efficacy can be connected to specific genetic alterations with a strong rationale for personalized therapy in a subset of malignancies. Given the CK2 role in promoting drug resistance, CK2-TN03 could also potentiate the efficacy of current clinical treatments by acting via its different MoA. This also applies to cancer immunotherapy. It is indeed well known that PD-L1 modulation is critical to improve the clinical response to these treatments. CK2 phosphorylates PD-L1 preventing its ubiquitination and degradation and the combination of CK2 and immune checkpoint inhibitors could synergistically impede tumour growth.

Aims

Release of a drug candidate with confirmation of its in vivo efficacy and MoA in NB and melanoma. Validation in drug-resistant cell lines for its use in combination with current standards of care.

Experimental design

The CK2-TN03 pharmacokinetic profile will be optimized by refining its derivatives through cycles of chemical synthesis (outsourced) and in vitro evaluation of their bioavailability, stability and safety, finally funneling them for in vivo PK characterization (half-life, tissue distribution and route of administration). For melanoma, compounds will be first tested in zebrafish models allowing for faster and cheaper studies to inform the subsequent mouse tests. The drug candidate will then be tested in mouse xenografts for both NB and melanoma with evaluation of tumour progression by in vivo imaging, and survival rate. The compound will also be evaluated by drug combination matrices to define its additive or synergistic effect with selected drugs in the clinical practice.

Expected results

Starting from the extensive preliminary data, we expect to deliver a drug candidate with excellent bioavailability and stability, having defined the most favourable administration route. We will also provide evidence that the drug candidate can be profitably used in combination with current standards of care to inform future clinical trials for refractory malignancies.

Descrizione sintetica dell’attività e dei risultati attesi

Introduzione e risultati preliminari
CK2 è una protein chinasi iperattiva in vari tumori. Abbiamo sviluppato un inibitore di CK2 (CK2-TN03), superiore a quello attualmente in sperimentazione clinica, estremamente efficace in neuroblastoma (NB). Il suo meccanismo d'azione (MoA) è stato definito: CK2-TN03 riduce il livello e l'attività della proteina mitogenica ed anti-apoptotica survivin, amplificata in tutti i NB ad alto rischio. Negli xenotrapanti di NB, CK2-TN03 riduce sensibilmente la crescita del tumore ed incrementa il tasso di sopravvivenza, senza segni di tossicità. Il composto è stato caratterizzato per il binding mode a CK2 e per la sua specificità (su 345 chinasi umane) e testato su 160 linee cellulari tumorali. La sua efficacia è notevole anche nel melanoma, nell'osteosarcoma e nei sarcomi dei tessuti molli. La classe chimica CK2-TN03 è stata brevettabilità con l'Università di Trento unico titolare della proprietà intellettuale.

Ipotesi
CK2-TN03 è un lead compound che può rapidamente progredire a candidato farmaco in seguito all’ottimizzazione delle proprietà ADMET in vitro e farmacocinetiche (PK) in vivo. La sua efficacia può essere collegata a specifiche alterazioni genetiche con un chiaro razionale per una terapia personalizzata in un sottogruppo di neoplasie. Dato il ruolo di CK2 nel promuovere la resistenza ai farmaci, CK2-TN03 potrebbe anche potenziare l’efficacia degli attuali trattamenti clinici agendo attraverso il suo diverso MoA. Ciò vale anche nel caso di trattamenti immunoterapici: è infatti ben noto che la modulazione di PDL1 è fondamentale per migliorare la risposta clinica a questi trattamenti. CK2 fosforila PD-L1 prevenendo l'ubiquitinazione e la degradazione. L'utilizzo combinato di inibitori di CK2 e di checkpoint immunitari potrebbe impedire sinergicamente lo sviluppo tumorale.

Obiettivi
Rilascio di un candidato farmaco con conferma della sua efficacia in vivo e MoA in NB e melanoma. Validazione in linee cellulari chemiossistenti per il suo utilizzo in combinazione con gli attuali standard di cura.

Strategia sperimentale
Il profilo farmacocinetico di CK2-TN03 sarà ottimizzato raffinando i suoi derivati attraverso cicli di sintesi chimica (esternalizzata) e valutazione in vitro della loro biodisponibilità, stabilità e tossicità, per poi incanalare per la caratterizzazione PK in vivo (emivita, distribuzione tissutale e via di somministrazione). Per il melanoma, i composti verranno prima testati su modelli di Zebrafish, consentendo studi più rapidi ed economici per i successivi test murini. Il farmaco candidato verrà quindi testato su xenotrapanti murini sia per NB che per melanoma con valutazione della progressione del tumore mediante imaging in vivo e tasso di sopravvivenza. Il composto sarà inoltre valutato mediante matrici di co-trattamento per definire il suo effetto additivo o sinergico con farmaci nella pratica clinica per NB e melanoma.

Risultati attesi
Considerando i numerosi dati preliminari e l’ottima performance del composto capostipite CK2-TN03, ci aspettiamo di rendere disponibile un candidato farmaco con eccellente biodisponibilità e stabilità, avendo definito la via di somministrazione più favorevole. Dimostriamo inoltre che la medesima molecola può essere utilizzata con profitto in combinazione con gli attuali standard di cura per informare futuri studi clinici per tumori refrattari.

Candidate’s profile (skills and competencies)
Required qualifications
- Master degree in Biology, Biotechnology or Pharmacology.
- Thorough familiarity with mammalian cell culture and basic molecular/cell biology, including WB and RT-qPCR.
Preferred skills/experience in
- Cancer biology, signaling pathways, protein kinases
- Flow cytometry
- Microscopy
- Cell-based and biochemical assays
- Familiarity with lab robotics and automation
The candidate will be trained and supported by more senior colleagues

Profilo del/la candidato/a
Qualifiche richieste
- Laurea Magistrale in Biologia, Biotecnologie o Farmacologia.
- Esperienza in colture cellulari di mammifero e nelle tecniche di base di biologia molecolare/cellulare, inclusi WB e RT-qPCR.
Competenze/esperienze preferenziali nei settori
- Biologia del cancro, vie di segnalazione, protein-chinasi
- Citometria
- Microscopia
- Saggi cellulari e biochimici
- Familiarità con la robotica e l’automazione di laboratorio
Il candidato sarà formato e supportato da colleghi senior.